2022-01-21
目前,各种电储能技术大体可分为以下3类:物理储能(如抽水蓄能、压缩空气储能、飞轮储能等),电化学储能(如锂离子电池、铅炭电池、钠硫电池、全钒液流电池等)和电磁储能(如超导电磁储能、超级电容器等)。
今天简单介绍基于非物理储能的电储能技术。
(1)电化学储能
目前的电力系统中已大量采用用各种技术成熟的可充放电电池系统作为电化学储能体系,目前常用储能电池技术体系主要包括四大类:锂离子电池、铅炭电池、液流电池、钠硫电池。
其中,锂离子电池和铅蓄电池因为产业化基础好,具有明显的成本优势,因此仍是目前电化学储能市场的首选。根据相关统计,国内电化学储能项目应用集中在用户侧,随着风力发电、光伏发电的爆发式增长,引入电池储能系统有利于提升风电、光伏利用率,增大收益。由于风力、光伏发电的高峰期与用户用电的高峰期在时间上是错开的,因此引入储能系统,可明显提升用户收益;分布式燃气发电系统同样可以引入电池作为储电装置,削峰填谷,改善系统稳定性;增加备用,增加系统抗干扰力;功率支撑,改善系统供能稳定性。从系统发电侧到用户用电侧,电池系统可以平滑负荷,减小对备用容量的需求,提高收益;实现不同发电方式之间的耦合;系统故障时,可帮助重启系统,恢复正常运行;改善功率分布,保证用户的供电质量;作为应急和备用,解决短时间的供电短缺;即插即用,及时进行能量补充。
(2)电磁储能
2.1超导电磁技术
超导电磁储能原理是工作时把能量存储在流过超导线圈的直流电流产生的磁场中,其特点是效率高(>97%)、响应快(ms级)、无污染等,在超导状态下线圈的电阻可以不计,因此能耗非常小,可以用来进行长期无损耗的储能。但是超导线圈需要在温度极低的液体中工作,因此成本太高,同时也会增加系统的复杂性。目前在电力系统中的应用主要用于提高系统的暂态稳定性,改善电能质量和风电、光电等随机性强的间歇式新能源并网特性。
2.2超级电容器
超级电容器的原理是依据双电层原理直接存储电能,介于常规电容器和电池之间,其充放电可逆性非常好,优于电池,可进行数十万次的反复充放电循环。针对超级电容器响应快、循环寿命长的特点,和电池能量密度高、循环寿命短的特点,将二者结合形成混合储能系统,取长补短。在风电、光伏发电系统中,一般使用超级电容器优先充放电,同时充当“功率缓冲器”,平抑尖峰及往复性风电功率波动,延长蓄电池的使用寿命;能量密度大的蓄电池,作为系统中的主要能量来源,用于平抑风电功率的长期稳态波动,调节超级电容器荷电状态,从而快速响应风电功率的下次波动。这样的混合搭配既避免了单独采用蓄电池储能造成的功率超额配置,又避免单独采用超级电容器储能所引起的成本增加,有效降低了储能系统的投资成本。
锂电未来趋势:原材料高涨,锂电池产业链变革将不断加速近日山木新能源表示:随着全球能源转型升级、碳排放要求不断提高,新能源汽车产业高景气度持续。电池作为电动汽车重要的部分之一,电动汽车发展如火如荼,也在不断推动动力锂电池需求量快速增长,进一步刺激市
2022-06-20由于锂电池本身的客观缺点,锂电池保护板的功能可以弥补锂电池的一些缺点。电池制作材料决定其不能过充、过放、过流、短路和超高温充放电,所以需要电池保护板进行预防和保护。锂电池保护板的设计作用包括以下几点:1、过充检测电压:正常状态下,Vdd提高到CO端,
2022-05-07一、当聚合物软包锂电池无法充电时是什么原因?1)检查电池是否为零电压、高内阻电池;2)检查保护电路的连接是否异常;3)检查电池在充电状态下是否有异常,如无充电电压/电流输出;4)环境温度是否过高导致充电效率低(佳温度不应超过40℃)。处理方法:1)
2022-03-19当这些锂离子成为电子后,数据的外部会产生锂原子晶体,这将形成像过充电一样的危险性。万一电池壳坏了,它就会爆炸。因此,锂离子电池的保护必须至少包括:充电电压的上限、放电电压的下限和电流的上限。一般情况下,除了锂电池芯外,锂电池组中会有一块保护板。这种保护板主要是提供这三种保护。1、内部化程度大;2.吸水性,与电解质反应;...
2023-06-01锂电池的生产工艺流程图详解. 具体地说如下:物料准备——匀浆——涂布——碾压——分切——烘烤——卷绕——入壳——激光焊——烘烤——注液——预充——封口——清洗——老化——全检——入库——出货;——搅拌、涂布、卷绕、检测为锂电池的主要生产工艺。1、浆料
2023-02-08很多人认为挂卡锂电池的寿命就是充电次数,其实不然,应称为充电周期。一个完整的充电周期是指 100% 充电和 100% 放电,挂卡锂电池寿命约为 300-500 次完全充电周期。挂卡锂电池的自放电率相对较高。为了安全起见,在不使用电池时,应将电池充满并
2022-03-12
